Optimised Motion Tracking for Positron Emission Tomography Studies of Brain Function in Awake Rats

نویسندگان

  • Andre Z. Kyme
  • Victor W. Zhou
  • Steven R. Meikle
  • Clive Baldock
  • Roger R. Fulton
چکیده

Positron emission tomography (PET) is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours. Due to the frequent and rapid motion exhibited by alert, awake animals, optimal motion correction requires frequently sampled pose information and precise synchronisation of these data with events in the PET coincidence data stream. Motion measurements should also be as accurate as possible to avoid degrading the excellent spatial resolution provided by state-of-the-art scanners. Here we describe and validate methods for optimised motion tracking suited to the correction of motion in awake rats. A hardware based synchronisation approach is used to achieve temporal alignment of tracker and scanner data to within 10 ms. We explored the impact of motion tracker synchronisation error, pose sampling rate, rate of motion, and marker size on motion correction accuracy. With accurate synchronisation (<100 ms error), a sampling rate of >20 Hz, and a small head marker suitable for awake animal studies, excellent motion correction results were obtained in phantom studies with a variety of continuous motion patterns, including realistic rat motion (<5% bias in mean concentration). Feasibility of the approach was also demonstrated in an awake rat study. We conclude that motion tracking parameters needed for effective motion correction in preclinical brain imaging of awake rats are achievable in the laboratory setting. This could broaden the scope of animal experiments currently possible with PET.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking and characterizing the head motion of unanaesthetized rats in positron emission tomography.

Positron emission tomography (PET) is an important in vivo molecular imaging technique for translational research. Imaging unanaesthetized rats using motion-compensated PET avoids the confounding impact of anaesthetic drugs and enables animals to be imaged during normal or evoked behaviour. However, there is little published data on the nature of rat head motion to inform the design of suitable...

متن کامل

The effect of fasting on Positron Emission Tomography (PET) imaging

As a nuclear approach, Positron Emission Tomography (PET) is a functional imaging technique which is based on the detection of gamma ray pairs emitted by a positron-emitting radionuclide. There are certain limitations to this technique such as normal tissue uptake. Therefore, it has been recommended that patients prepare before scanning. Fasting for a short while before PET imaging is an exampl...

متن کامل

Detection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging

Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging  yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...

متن کامل

The effect of isoflurane on 18F-FDG uptake in the rat brain: a fully conscious dynamic PET study using motion compensation

BACKGROUND In preclinical positron emission tomography (PET) studies an anaesthetic is used to ensure that the animal does not move during the scan. However, anaesthesia may have confounding effects on the drug or tracer kinetics under study, and the nature of these effects is usually not known. METHOD We have implemented a protocol for tracking the rigid motion of the head of a fully conscio...

متن کامل

Respiratory motion correction in prostate cancer positron emission tomography: A study on patients and phantom simulation

Introduction: To investigate the effects of breathing cycle and tree diaphragm motions on prostate cancer tumors standard uptake value (SUV) during positron emission tomography (PET) and to correct it. Materials and methods: Respiratory motion traces were simulated on the common patient breathing cycle and tree diaphragm motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011